什么是机器学习的过度拟合现象?过度拟合产生的原因?如何避免过拟合问题?
如果一味的去提高训练数据的预测能力,所选模型的复杂度往往会很高,这种现象称为过拟合,所表现的就是模型训练时候的误差很小,但在测试的时候误差很大。
过拟合的产生总结一下大概有以下五种原因可能产生:
(1) 建模样本抽取错误,包括(但不限于)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景
(2) 样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系
(3) 在决策树模型搭建中,如果我们对于决策树的生长没有合理的限制和修剪的话,决策树的自由生长有可能每片叶子里只包含单纯的事件数据(event)或非事件数据(no event),可以想象,这种决策树当然可以完美匹配(拟合)训练数据,但是一旦应用到新的业务真实数据时,效果是一塌糊涂。
(4) 建模时的“逻辑假设”到了模型应用时已经不能成立了。任何预测模型都是在假设的基础上才可以搭建和应用的,常用的假设包括:假设历史数据可以推测未来,假设业务环节没有发生显著变化,假设建模数据与后来的应用数据是相似的,等等。如果上述假设违反了业务场景的话,根据这些假设搭建的模型当然是无法有效应用的。
(5) 建模时使用了太多的输入变量,这跟上面第二点(噪音数据)有些类似,数据挖掘新人常常犯这个错误,自己不做分析判断,把所有的变量交给软件或者机器去“撞大运”。须知,一个稳定优良的模型一定要遵循建模输入变量“少而精”的原则的。
上面的原因都是现象,但是其本质只有一个,那就是“业务理解错误造成的”,无论是抽样,还是噪音,还是决策树,神经网络等等,如果我们对于业务背景和业务知识非常了解,非常透彻的话,一定是可以避免绝大多数过拟合现象产生的。因为在模型从确定需求,到思路讨论,到搭建,到业务应用验证,各个环节都是可以用业务敏感来防止过拟合于未然的。
避免过拟合问题:
(1) 重采样Bootstrap
(2) L1,L2 正则化
(3) 决策树的剪枝操作
(4) 交叉验证